Robust Iris Verification Based on Local and Global Variations
نویسندگان
چکیده
This work addresses the increasing demand for a sensitive and user-friendly iris based authentication system. We aim at reducing False Rejection Rate (FRR). The primary source of high FRR is the presence of degradation factors in iris texture. To reduce FRR, we propose a feature extraction method robust against such adverse factors. Founded on local and global variations of the texture, this method is designed to particularly cope with blurred and unfocused iris images. Global variations extract a general presentation of texture, while local yet soft variations encode texture details that are minimally reliant on the image quality. Discrete Cosine Transform and wavelet decomposition are used to capture the local and global variations. In the matching phase, a support vector machine fuses similarity values obtained from global and local features. The verification performance of the proposed method is examined and compared on CASIA Ver.1 and UBIRIS databases. Efficiency of the method contending with degraded images of the UBIRIS is corroborated by experimental results where a significant decrease in FRR is observed in comparison with other algorithms. The experiments on CASIA show that despite neglecting detailed texture information, our method still provides results comparable to those of recent methods.
منابع مشابه
A Visually Interpretable Iris Recognition System with Crypt Features
by Feng Shen One important barrier to the use of current iris recognition techniques in law enforcement areas such as forensics is that the iris features used by these techniques are not interpretable to human eyes. This dissertation proposes a novel iris recognition technique that determines a human’s identity based on the crypt, a visible feature on the iris. The major motivation is to aid th...
متن کاملRobust Iris Recognition in Unconstrained Environments
A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by him/her. Iris recognition (IR) is known to be the most reliable and accurate biometric identification system. The iris recognition system (IRS) consists of an automatic segmentation mechanism which is based on the Hough transform (HT). This paper presents a robust IRS i...
متن کاملAutomatic Face Recognition System Based on Local Fourier-Bessel Features
We present an automatic face verification system inspired by known properties of biological systems. In the proposed algorithm the whole image is converted from the spatial to polar frequency domain by a Fourier-Bessel Transform (FBT). Using the whole image is compared to the case where only face image regions (local analysis) are considered. The resulting representations are embedded in a diss...
متن کاملIris Recognition Based on Non-local Comparisons
Iris recognition provides a reliable method for personal identification. Inspired by recent achievements in the field of visual neuroscience, we encode the non-local image comparisons qualitatively for iris recognition. In this scheme, each bit iris code corresponds to the sign of an inequality across several distant image regions. Compared with local ordinal measures, the relationships of diss...
متن کاملA Robust Competitive Global Supply Chain Network Design under Disruption: The Case of Medical Device Industry
In this study, an optimization model is proposed to design a Global Supply Chain (GSC) for a medical device manufacturer under disruption in the presence of pre-existing competitors and price inelasticity of demand. Therefore, static competition between the distributors’ facilities to more efficiently gain a further share in market of Economic Cooperation Organization trade agreement (ECOTA) is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010